Here is my (24.59.96.237) best understanding of how to get tedomari, in practical terms:
If you are to play, and the number of plays at the current temperature is odd, you have tedomari. If it is even, you do not have tedomari. In order to get it, you have to change the parity of the number of plays available.
This can mean playing a move that denies your opponent two moves. This means you have "taken" three moves with your play, so an odd number of plays becomes even. In practical terms, usually you deny your opponent one move simply by playing where he would like to play (Your Opponent's Good Move Is Your Good Move). So you need to also deny him a potential follow-up move, and you will grab tedomari.
The other possibility for gaining tedomari is to play a move that gives you two independent follow-ups at the local temperature.
I'm sure there are other tricks, anybody want to post some?
Bill: (Much, much later.) Reading this again, I think maybe he's got it backwards. Generally you want to allow your opponent plays with follow-up moves of the same size, because that gives you more chances to make the last play. For instance, Black facing an up plus a star should not play the up, which has a follow-up for White, but should play the star. Now when White plays in the up, Black can reply in the follow-up move and get the last play.
Discussion following Robert Pauli's example on main page, moved to Calculating a Thermograph.
moved while making WME - don't know a good place for it
Bill: Thanks, Andy. :-) However, that is not really a tedomari problem. See Numbers.
Can you explain the distinction?
Bill: Sure. The point of the numbers problem is making the largest play.
Here Black plays correctly and holds White to 6 points. Black also gets tedomari.
Here Black plays incorrectly and lets White get 7 points. However, Black still gets tedomari.
xela :but if white responds this way, then white gets 7 points and tedomari:
Bill: And your point is??? ;)
tapir: How much can I gain by Tedomari? The amount temperature drops after the specific tedomari? So how much would it be worth to get the last opening big point, the last big endgame point and the last point?
Bill: Assuming otherwise correct play, the most you can gain by getting tedomari is how much the play gains. But let's suppose that the hottest plays on the board are a number of plays that each gain T, the ambient temperature. Then the temperature drops to T1. We may estimate the gain from playing at any temperature to be half that temperature. So we estimate the gain from getting tedomari as T - T1/2, since the opponent goes first at temperature T1. If the opponent gets tedomari instead, the estimated gain is T1/2. The difference between these two estimates is T - T1, the drop in temperature. So the estimated gain of getting tedomari versus losing it is the drop in temperature.
As for the value of various tedomari, I think that usually the gain from getting the last big point in the opening is 1 to 2 points, the gain from getting the last point of the game is usually 1 point, and the gain from the last big endgame point is usually 2 to 3 points. The last is bigger, because often you cannot say that there is a last big endgame play, so that when you can, the drop in temperature is significant. These values are just my opinion.
tapir: Can one consider ko as a temporal increase in temperature which falls back to average after resolving the ko / playing out the last threat. Would not a ko fight then be just a variant of a fight over tedomari?