Coordinates

   

This page needs wiki master editing.


Coordinates are used to name every point on the go board, e. g. in a game record or simply to describe stones on the board. Several styles are in use.

  • Style A1

In Europe it is usual to give coordinates in the form of A1 to T19. Where A1 is in the lower left corner and T19 in the upper right corner (from black's view). Note: "I" is not used, historically to avoid confusion with "J"

  • Style 1-1 or 一1

But there are also other coordinate notations in use. E. g. in the form of two figures 1-1 to 19-19. In written one of the two coordinate usually is given in kanji. Note that 1-1 is at the upper left corner and 19-19 at the lower right corner. For an example see this game record:
http://www.asahi.com/igo/photogallery/image/TKY200609210129.jpg

  • Audouard coordinates

See also Audouard coordinates for a different coordinate system more suited to Go.


Just in case you were having trouble memorizing coordinate equivalents by point name.

Western Point Inversion Chart for 19x19 Goban:

1 = 19 = A = T

2 = 18 = B = S

3 = 17 = C = R

4 = 16 = D = Q

5 = 15 = E = P

6 = 14 = F = O

7 = 13 = G = N

8 = 12 = H = M

9 = 11 = J = L

10 = 10 = K = K

11 = 9 = L = J

12 = 8 = M = H

13 = 7 = N = G

14 = 6 = O = F

15 = 5 = P = E

16 = 4 = Q = D

17 = 3 = R = C

18 = 2 = S = B

19 = 1 = T = A


rokirovka: I personally prefer the following coordinate system over the A-T, 1-19 system and the Audouard coordinate system.

The problem with the existing algebraic notation for go is that while the letters and numbers A,B,C,D,E,F,G,H,J,K and 1,2,3,4,5,6,7,8,9,10 are natural to identify with points on the board in one's mind, the letters T,S,R,Q,P,O,N,M,L and numbers 19,18,17,16,15,14,13,12,11 are much less natural, especially since one is counting and alphabetizing backwards as the points go away from the corner and sides, the opposite of the A,B,C... and 1,2,3... points.

The double-number and double-letter notations, such as Audouard coordinates, are also hard for me to keep clear in my head when there are more than two or three moves. For example, if I memorize a joseki as Black 3-4, White 5-3, Black 7-3, White 5-5, Black 4-6, White 8-4, the numbers are already blurring together indistinctly in my head. For me, the Audouard coordinates are no better: Black a34, White a53, Black a73, White a55, Black a46, White a84 is just as much a blur in my head. It's much easier to memorize Black C4, White E3, Black G3, White E5, Black D6, White H4. That I can visualize in my head. The problem is that Black R16, White P17, Black N17, White P15, Black Q14, White M16 is a blur again with the bigger numbers and letters in the middle of the alphabet and everything going backwards.

Thus, I personally find it much easier to follow an algebraic notation where all four corners are marked as A,B,C,D,E,F,G,H,J and 1,2,3,4,5,6,7,8,9 and asterisks are used to mark the right side and the top side. K and 10 of course never need asterisks. Thus I can notate the above joseki in the top right corner as Black C*4*, White E*3*, Black G*3*, White E*5*, Black D*6*, White H*4*. I say the moves in my head as "Black C-star-4-star, White E-star-3-star," etc. As an added bonus, I can instantly recognize a tenuki in a different part of the board because the asterisks are different. If I am analyzing a position in only one corner of the board, I can leave out the "stars" as I note the moves in my head as I calculate.

Here is an example of my notation recording the beginning moves of a game I like, Cho Chikun vs. Kato Masao, 7th Kisei, Strongest Players' Final, Game 2, 16 December 1982. See how far you can follow the opening moves in your head as you read them.

 1.  C*4*  D4*
2. D*3 C3
3. E*3* C*5
4. C*7 E*5
5. F*4 D*8
6. C*4 B*4
7. D*7 F*5
8. G*4 E*7
9. E*8 C*8
10. F*7 E*6
11. E*9 C*10
12. B*3 D*10
13. B*5 C*6
14. C6* F4*
(tenuki!)
15. B4* C3*
16. C9* J*3*
17. F4 C6
18. H*6 H3
19. K3 E*4
20. E*3 K4
21. J*3 G5
22. D4 C4
23. D6 C7
24. G4 H4
25. H5 G6
26. J5 G2
27. D3 E2
28. D7 D8
29. E8 D2
30. E9 F7
31. C8 B8
32. C9 C*6*
33. D5


Here is a diagram showing the name of each point on the 19x19 goban in this coordinate system:

 A1*  B1*  C1*  D1*  E1*  F1*  G1*  H1*  J1*  K1*  J*1*  H*1*  G*1*  F*1*  E*1*  D*1*  C*1*  B*1*  A*1*
A2* B2* C2* D2* E2* F2* G2* H2* J2* K2* J*2* H*2* G*2* F*2* E*2* D*2* C*2* B*2* A*2*
A3* B3* C3* D3* E3* F3* G3* H3* J3* K3* J*3* H*3* G*3* F*3* E*3* D*3* C*3* B*3* A*3*
A4* B4* C4* D4* E4* F4* G4* H4* J4* K4* J*4* H*4* G*4* F*4* E*4* D*4* C*4* B*4* A*4*
A5* B5* C5* D5* E5* F5* G5* H5* J5* K5* J*5* H*5* G*5* F*5* E*5* D*5* C*5* B*5* A*5*
A6* B6* C6* D6* E6* F6* G6* H6* J6* K6* J*6* H*6* G*6* F*6* E*6* D*6* C*6* B*6* A*6*
A7* B7* C7* D7* E7* F7* G7* H7* J7* K7* J*7* H*7* G*7* F*7* E*7* D*7* C*7* B*7* A*7*
A8* B8* C8* D8* E8* F8* G8* H8* J8* K8* J*8* H*8* G*8* F*8* E*8* D*8* C*8* B*8* A*8*
A9* B9* C9* D9* E9* F9* G9* H9* J9* K9* J*9* H*9* G*9* F*9* E*9* D*9* C*9* B*9* A*9*
A10 B10 C10 D10 E10 F10 G10 H10 J10 K10 J*10 H*10 G*10 F*10 E*10 D*10 C*10 B*10 A*10
A9 B9 C9 D9 E9 F9 G9 H9 J9 K9 J*9 H*9 G*9 F*9 E*9 D*9 C*9 B*9 A*9
A8 B8 C8 D8 E8 F8 G8 H8 J8 K8 J*8 H*8 G*8 F*8 E*8 D*8 C*8 B*8 A*8
A7 B7 C7 D7 E7 F7 G7 H7 J7 K7 J*7 H*7 G*7 F*7 E*7 D*7 C*7 B*7 A*7
A6 B6 C6 D6 E6 F6 G6 H6 J6 K6 J*6 H*6 G*6 F*6 E*6 D*6 C*6 B*6 A*6
A5 B5 C5 D5 E5 F5 G5 H5 J5 K5 J*5 H*5 G*5 F*5 E*5 D*5 C*5 B*5 A*5
A4 B4 C4 D4 E4 F4 G4 H4 J4 K4 J*4 H*4 G*4 F*4 E*4 D*4 C*4 B*4 A*4
A3 B3 C3 D3 E3 F3 G3 H3 J3 K3 J*3 H*3 G*3 F*3 E*3 D*3 C*3 B*3 A*3
A2 B2 C2 D2 E2 F2 G2 H2 J2 K2 J*2 H*2 G*2 F*2 E*2 D*2 C*2 B*2 A*2
A1 B1 C1 D1 E1 F1 G1 H1 J1 K1 J*1 H*1 G*1 F*1 E*1 D*1 C*1 B*1 A*1

DPledger: I have a minor suggestion for rokirovka's system. Instead of using the asterisk (*), try using the [ext] prime mark ( ′ ). It is already used frequently in mathematics for coordinate transformations, so this would be a natural application of the symbol. It is also typically pronounced, so A′3 would be spoken as "A prime 3".

Daniel?: I have been thinking about it and I have a suggestion that in part comes from my experience as a programmer I call the system B19 (a contraction of Base 19) now this takes a bit of a different tack as to where the initial index is (the programming experience coming in) and this may not be to the liking of some but where for other systems the initial index is 1 or A the initial index in this system 0 (which some players may not like) and has a maximum index on I with the format being (y,x) or yx (which works since every column ans row is represented by a single digit) so what some would cal the 1,1 point in this system would be the 0,0 or 00 or 0 point now what is that about you ask? well from this column row system there arises a natural numbering system where you can also call a point by a single number rather than as a pair of numbers with point 0,0 being point 0 and II (aka 18,18 or in a traditional system 19,19) also being called point 360. to summarize base 19:
0=0
1=1
2=2
3=3
4=4
5=5
6=6
7=7
8=8
9=9
A=10
B=11
C=12
D=13
E=14
F=15
G=16
H=17
I=18
unfortunately while this is fairly intuitive for anyone who is well enough versed in computer programming or certain areas of mathematics it may cause problems for the average player.

 0,0  0,1  0,2  0,3  0,4  0,5  0,6  0,7  0,8  0,9  0,A  0,B  0,C  0,D  0,E  0,F  0,G  0,H  0,I
1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 1,A 1,B 1,C 1,D 1,E 1,F 1,G 1,H 1,I
2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 2,A 2,B 2,C 2,D 2,E 2,F 2,G 2,H 2,I
3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9 3,A 3,B 3,C 3,D 3,E 3,F 3,G 3,H 3,I
4,0 4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 4,9 4,A 4,B 4,C 4,D 4,E 4,F 4,G 4,H 4,I
5,0 5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8 5,9 5,A 5,B 5,C 5,D 5,E 5,F 5,G 5,H 5,I
6,0 6,1 6,2 6,3 6,4 6,5 6,6 6,7 6,8 6,9 6,A 6,B 6,C 6,D 6,E 6,F 6,G 6,H 6,I
7,0 7,1 7,2 7,3 7,4 7,5 7,6 7,7 7,8 7,9 7,A 7,B 7,C 7,D 7,E 7,F 7,G 7,H 7,I
8,0 8,1 8,2 8,3 8,4 8,5 8,6 8,7 8,8 8,9 8,A 8,B 8,C 8,D 8,E 8,F 8,G 8,H 8,I
9,0 9,1 9,2 9,3 9,4 9,5 9,6 9,7 9,8 9,9 9,A 9,B 9,C 9,D 9,E 9,F 9,G 9,H 9,I
A,0 A,1 A,2 A,3 A,4 A,5 A,6 A,7 A,8 A,9 A,A A,B A,C A,D A,E A,F A,G A,H A,I
B,0 B,1 B,2 B,3 B,4 B,5 B,6 B,7 B,8 B,9 B,A B,B B,C B,D B,E B,F B,G B,H B,I
C,0 C,1 C,2 C,3 C,4 C,5 C,6 C,7 C,8 C,9 C,A C,B C,C C,D C,E C,F C,G C,H C,I
D,0 D,1 D,2 D,3 D,4 D,5 D,6 D,7 D,8 D,9 D,A D,B D,C D,D D,E D,F D,G D,H D,I
E,0 E,1 E,2 E,3 E,4 E,5 E,6 E,7 E,8 E,9 E,A E,B E,C E,D E,E E,F E,G E,H E,I
F,0 F,1 F,2 F,3 F,4 F,5 F,6 F,7 F,8 F,9 F,A F,B F,C F,D F,E F,F F,G F,H F,I
G,0 G,1 G,2 G,3 G,4 G,5 G,6 G,7 G,8 G,9 G,A G,B G,C G,D G,E G,F G,G G,H G,I
H,0 H,1 H,2 H,3 H,4 H,5 H,6 H,7 H,8 H,9 H,A H,B H,C H,D H,E H,F H,G H,H H,I
I,0 I,1 I,2 I,3 I,4 I,5 I,6 I,7 I,8 I,9 I,A I,B I,C I,D I,E I,F I,G I,H I,I

This is a copy of the living page "Coordinates" at Sensei's Library.
(OC) 2012 the Authors, published under the OpenContent License V1.0.
[Welcome to Sensei's Library!]
StartingPoints
ReferenceSection
About